Life-history theory predicts evolutionary changes in reproductive traits and intrinsic mortality rates in response to differences in extrinsic mortality rates. Trade-offs between life- history traits play a pivotal role in these predictions, and such trade-offs are mediated, at least in part, by physiological allocations. To gain insight into these trade-offs, we have been performing a long-term experiment in which we allow fruitflies, Drosophila melanogaster, to evolve in response to high (HAM) and low (LAM) adult mortality rates. Here we analyze the physiological correlates of the life-history trade-offs. In addition to changing development time and early fecundity in the direction predicted, high adult mortality affected three traits expressed early in life—body size, growth rate, and ovariole number—but had little or no effect on body composition (relative fat content), viability, metabolic rate, activity, starvation resistance, or desiccation resistance. Correlations among lines revealed trade-offs between early fecundity, late fecundity, and starvation resistance, which appear to be mediated by differential allocation of lipids.
Corresponding Editor: D. Roff